Dynamic Bank Capital Requirements

Tetiana Davydiuk

The 17th Annual Bank Research Conference 2017

- Basel II 2004:
 - ► risk-based capital requirements
 - credit supply is overly pro-cyclical

- Basel II 2004:
 - risk-based capital requirements
 - credit supply is overly pro-cyclical
- Basel III 2010:
 - countercyclical capital buffers (CCyB)
 - ★ additional layer of capital between 0% and 2.5%
 - effectively, time-varying capital charges
 - ▶ few trials within EU nations

- Framework based on 18 core indicators (capital ratios, leverage ratios...)
- Key anchor: "credit gap" (deviation of credit-to-GDP ratio from its trend)

- Framework based on 18 core indicators (capital ratios, leverage ratios...)
- Key anchor: "credit gap" (deviation of credit-to-GDP ratio from its trend)

- Framework based on 18 core indicators (capital ratios, leverage ratios...)
- Key anchor: "credit gap" (deviation of credit-to-GDP ratio from its trend)

- Framework based on 18 core indicators (capital ratios, leverage ratios...)
- Key anchor: "credit gap" (deviation of credit-to-GDP ratio from its trend)

Optimal capital regulation over the cycle

Frictions:

- Government bailouts + Limited liability
 - Risk-shifting motive
 - Excessive lending

Optimal capital regulation over the cycle

Frictions:

- Government bailouts + Limited liability
 - Risk-shifting motive
 - Excessive lending
- Households value safe liquid assets
 - Discount on bank debt
 - Equity financing is costly

Optimal capital regulation over the cycle

Frictions:

- Government bailouts + Limited liability
 - Risk-shifting motive
 - Excessive lending
- Households value safe liquid assets
 - Discount on bank debt
 - Equity financing is costly

Trade-off from capital regulation:

Benefit: reduced bank risk-shifting incentives

Cost: reduced supply of loans and deposits

Optimal capital regulation over the cycle

Frictions:

- Government bailouts + Limited liability
 - Risk-shifting motive
 - Excessive lending
- Households value safe liquid assets
 - Discount on bank debt
 - Equity financing is costly

Trade-off from capital regulation:

- Benefit: reduced bank risk-shifting incentives
 - ► Procyclical excessive lending
- Cost: reduced supply of loans and deposits

Optimal capital regulation over the cycle

Frictions:

- Government bailouts + Limited liability
 - Risk-shifting motive
 - Excessive lending
- Households value safe liquid assets
 - Discount on bank debt
 - Equity financing is costly

Trade-off from capital regulation:

- Benefit: reduced bank risk-shifting incentives
 - ► Procyclical excessive lending
- Cost: reduced supply of loans and deposits
 - Countercyclical liquidity premium

Optimal capital regulation over the cycle

Frictions:

- Government bailouts + Limited liability
 - Risk-shifting motive
 - Excessive lending
- Households value safe liquid assets
 - Discount on bank debt
 - Equity financing is costly

Trade-off from capital regulation:

- Benefit: reduced bank risk-shifting incentives
 - ► Procyclical excessive lending
- Cost: reduced supply of loans and deposits
 - Countercyclical liquidity premium
- ⇒ Procyclical capital regulation optimal scheme in Ramsey equilibrium

Contribution

Theoretical model:

- Characterize optimal state-dependent capital requirements
- Document novel trade-offs associated with dynamic policies:
 - Procyclical risk-shifting
 - Countercyclical cost of holding equity

Contribution

Theoretical model:

- Characterize optimal state-dependent capital requirements
- Document novel trade-offs associated with dynamic policies:
 - Procyclical risk-shifting
 - Countercyclical cost of holding equity

Quantitative analysis:

- Solve for optimal Ramsey policy
 - Mostly varies between 4% and 6%
 - Centered around 5%
- Assess welfare implications
- Key cyclical determinants: credit gap, GDP growth and liquidity premium
 - Credit gap used alone falls short

Baseline Model

Model Setup

Continuum of [0,1] ex-ante identical **banks**:

Access to decreasing returns to scale technology

$$y_{j,t}=e^{\omega_{j,t}+a_t}I_{j,t}^{\alpha}$$

▶ a_t - aggregate productivity shock

$$a_{t} = (1 - \rho_{a}) \bar{a} + \rho_{a} a_{t-1} + \sigma_{a} \epsilon_{t}, \qquad \epsilon_{t} \sim iid \mathcal{N}(0, 1)$$

 \triangleright $\omega_{j,t}$ – idiosyncratic shock, *i.i.d* across time and across banks

$$\omega_{j,t} = -rac{1}{2}\sigma_{\omega}^{2} + \sigma_{\omega}arepsilon_{j,t}, \qquad arepsilon_{j,t} \sim \mathit{iid}\; \mathcal{N}\left(0,1
ight)$$

```
t-1 t \rightarrow t
```

Bank j:

- issues loans $I_{j,t}$
- financed either with equity or deposits $I_{j,t} = n_{j,t} + d_{j,t}$

enters with balance sheet

$$J_{j,t} \mid n_{j,t} d_{j,t}$$

realized profits

$$\pi_{j,t} = e^{\omega_{j,t} + a_t} I_{j,t}^{\alpha} - (R_{d,t} - 1) d_{j,t}$$

receives bailout transfer if

$$\pi_{j,t} + n_{j,t} < 0 \quad \Leftrightarrow \quad \omega_{j,t} < \omega_t^*$$

- pays dividends/issues equity $z_{j,t}$

$$t-1$$
 t

Bank j:

- issues loans $I_{j,t}$
- financed either with equity or deposits $I_{j,t} = n_{j,t} + d_{j,t}$
- enters with balance sheet

$$J_{j,t} \mid n_{j,t} \atop d_{j,t}$$

realized profits

$$\pi_{j,t} = e^{\omega_{j,t} + a_t} I_{j,t}^{\alpha} - (R_{d,t} - 1) d_{j,t}$$

receives bailout transfer if

$$\pi_{j,t} + n_{j,t} < 0 \quad \Leftrightarrow \quad \omega_{j,t} < \omega_t^*$$

- pays dividends/issues equity $z_{j,t}$

```
t-1 t
```

Bank j:

- issues loans $l_{j,t}$
- financed either with equity or deposits $l_{i,t} = n_{i,t} + d_{i,t}$
- enters with balance sheet

$$\begin{array}{c|c} I_{j,t} & n_{j,t} \\ & d_{j,t} \end{array}$$

realized profits

$$\pi_{j,t} = e^{\omega_{j,t} + a_t} I_{j,t}^{\alpha} - (R_{d,t} - 1) d_{j,t}$$

- receives bailout transfer if

$$\pi_{j,t} + n_{j,t} < 0 \quad \Leftrightarrow \quad \omega_{j,t} < \omega_t^*$$

– pays dividends/issues equity $z_{j,t}$

$$t-1$$
 t

Bank j:

- issues loans $l_{j,t}$
- financed either with equity or deposits $I_{i,t} = n_{i,t} + d_{i,t}$
- enters with balance sheet

$$\begin{array}{c|c} I_{j,t} & n_{j,t} \\ & d_{j,t} \end{array}$$

realized profits

$$\pi_{j,t} = e^{\omega_{j,t} + a_t} I_{j,t}^{\alpha} - (R_{d,t} - 1) d_{j,t}$$

receives bailout transfer if

$$\pi_{j,t} + n_{j,t} < 0 \quad \Leftrightarrow \quad \omega_{j,t} < \omega_t^*$$

– pays dividends/issues equity $z_{j,t}$

$$t-1$$
 t

Bank j:

- issues loans $l_{j,t}$
- financed either with equity or deposits $l_{i,t} = n_{i,t} + d_{i,t}$
- enters with balance sheet

$$J_{j,t}$$
 $n_{j,t}$ $d_{j,t}$

realized profits

$$\pi_{j,t} = e^{\omega_{j,t} + a_t} I_{j,t}^{\alpha} - (R_{d,t} - 1) d_{j,t}$$

- receives bailout transfer if

$$\pi_{j,t} + n_{j,t} < 0 \quad \Leftrightarrow \quad \omega_{j,t} < \omega_t^*$$

- pays dividends/issues equity $z_{j,t}$

• Net worth available at end of period t (going into period t + 1):

$$n_{j,t+1} = max \{\pi_{j,t} + n_{j,t}, 0\} - z_{j,t}$$

• Subject to capital requirement, ζ_t :

$$n_{j,t+1} \geq \zeta_t I_{j,t+1}$$

Bank j decides how many loans to issue and makes leverage choice:

$$\max_{l_{j,t+1},d_{j,t+1},n_{j,t+1}} E\left[\sum_{t=0}^{\infty} \beta^{t} z_{j,t}\right]$$
s.t.
$$n_{j,t+1} = \max\left\{e^{\omega_{j,t}+a_{t}}l_{j,t}^{\alpha} - R_{d,t}d_{j,t},0\right\} - z_{j,t},$$

$$l_{j,t+1} = n_{j,t+1} + d_{j,t+1},$$

$$n_{j,t+1} \geq \zeta_{t}l_{j,t+1},$$

$$l_{j,0}, d_{j,0} \quad given.$$

Bank j decides how many loans to issue and makes leverage choice:

$$\max_{l_{j,t+1},d_{j,t+1},n_{j,t+1}} E\left[\sum_{t=0}^{\infty} \beta^{t} z_{j,t}\right]$$
s.t.
$$n_{j,t+1} = \max\left\{e^{\omega_{j,t}+a_{t}}l_{j,t}^{\alpha} - R_{d,t}d_{j,t},0\right\} - z_{j,t},$$

$$l_{j,t+1} = n_{j,t+1} + d_{j,t+1},$$

$$n_{j,t+1} \geq \zeta_{t}l_{j,t+1},$$

$$l_{j,0}, d_{j,0} \quad given.$$

Equilibrium is symmetric:

$$I_{j,t+1} = L_{t+1}, \quad \forall j \in \Omega$$

Household sector:

- ullet Continuum of [0,1] identical households
- Two types of members:
 - Savers: supply deposits
 - Bankers: manage financial intermediaries
- Perfect consumption insurance

Household solves:

$$\begin{aligned} \max_{C_t, D_{t+1}} E\left[\sum_{t=0}^{\infty} \beta^t \left(C_t + \frac{D_{t+1}^{1-\eta}}{1-\eta}\right)\right], & 0 < \eta < 1 \\ s.t. & C_t = R_{d,t} D_t - D_{t+1} + Z_t - T_t, \end{aligned}$$

where C_t , D_{t+1} - family consumption and deposits supply

- Preference for holding liquidity
- Bank deposits subject to government guarantees
 - ▶ Rate of return on deposits $R_{d,t+1} \Rightarrow \text{safe}$
- Owners of banks
 - Net proceeds Z_t
- ullet Subject to lump-sum tax T_t

• FOC deliver discount on deposits rate

$$R_{d,t+1} = \frac{1}{\beta} - \frac{1}{\beta} D_{t+1}^{-\eta}$$

Government:

- Provides bailout subsidies
- Balanced budget rule:

$$T_{t} = \int_{0}^{1} \max \left\{ R_{d,t} d_{j,t} - e^{\omega_{j,t} + a_{t}} J_{j,t}^{\alpha}, 0 \right\} dj$$

Social Optimum

Social Optimum: First Best Allocation (1/3)

Social planner solves:

$$\max_{C_t, L_{t+1}, D_{t+1} \leq L_{t+1}} E\left[\sum_{t=0}^{\infty} \beta^t \left(C_t + \frac{D_{t+1}^{1-\eta}}{1-\eta}\right)\right]$$
s.t.
$$C_t + L_{t+1} = e^{a_t} L_t^{\alpha}$$

First-best allocation:

Bank's optimal finance policy:

$$D_{t+1}^{FB} = L_{t+1}^{FB} \qquad N_{t+1}^{FB} = 0$$

ullet Optimal level of bank lending, L_{t+1}^{FB} :

$$E_{t}\left[R_{l,t+1}^{FB}\right] = \underbrace{E_{t}\left[\alpha e^{a_{t+1}}\left(L_{t+1}^{FB}\right)^{\alpha-1}\right]}_{\textit{Marginal benefit}} = \underbrace{\frac{1}{\beta} - \frac{1}{\beta}\left(L_{t+1}^{FB}\right)^{-\eta}}_{\textit{Marginal cost}} = R_{d,t+1}^{FB}$$

Social Optimum: First Best Allocation (1/3)

Social planner solves:

$$\max_{C_t, L_{t+1}, D_{t+1} \leq L_{t+1}} E\left[\sum_{t=0}^{\infty} \beta^t \left(C_t + \frac{D_{t+1}^{1-\eta}}{1-\eta}\right)\right]$$

$$s.t. \qquad C_t + L_{t+1} = e^{a_t} L_t^{\alpha}$$

First-best allocation:

Bank's optimal finance policy:

$$D_{t+1}^{FB} = L_{t+1}^{FB}$$
 $N_{t+1}^{FB} = 0$

• Optimal level of bank lending, L_{t+1}^{FB} :

$$E_{t}\left[R_{l,t+1}^{FB}\right] = \underbrace{E_{t}\left[\alpha e^{a_{t+1}}\left(L_{t+1}^{FB}\right)^{\alpha-1}\right]}_{\textit{Marginal benefit}} = \underbrace{\frac{1}{\beta} - \frac{1}{\beta}\left(L_{t+1}^{FB}\right)^{-\eta}}_{\textit{Marginal cost}} = R_{d,t+1}^{FB}$$

Social Optimum: First Best Allocation (2/3)

• Optimal level of bank lending, L_{t+1}^{FB} :

$$E_t\left[R_{l,t+1}^{FB}\right] = R_{d,t+1}^{FB}$$

Social Optimum: First Best Allocation (3/3)

• Optimal level of bank lending, L_{t+1}^{FB} , is procyclical:

$$\frac{\partial L_{t+1}^{FB}}{\partial a_t} > 0$$

Competitive Equilibrium

No Capital Regulation

Competitive Equilibrium: No Capital Requirement (1/4)

Bailout wedge in bank's borrowing cost

$$\xi(L_{t+1}, N_{t+1}; a_t) = E_t \left[\int_0^{\omega_{t+1}^*} (R_{d,t+1} - e^{\omega} R_{l,t+1}) dF(\omega) \right]$$

▶ Increasing in bank lending L_{t+1}

• Excessive lending in competitive equilibrium:

$$L_{t+1}^{\mathit{CE}} > L_{t+1}^{\mathit{FB}}$$

ullet Bailout wedge is decreasing in aggregate productivity a_t

$$\xi(L_{t+1}, N_{t+1}; a_t) = E_t \left[\int_0^{\omega_{t+1}^*} (R_{d,t+1} - e^{\omega} R_{l,t+1}) dF(\omega) \right]$$

- Expected government bailout subsidies
 - \ominus decreasing in a_t
 - ⊕ increasing in bank lending
- Excessive lending is procyclical iff $-\bar{\xi}_a < \frac{\partial \xi(\cdot)}{\partial a_t} < 0$

Competitive Equilibrium

With Capital Regulation

Bank sector:

• Subject to capital requirement, ζ_t :

$$N_{t+1} \geq \zeta_t L_{t+1}$$

- Equity is more expensive than debt:
 - ⇒ banks forgo government subsidy
 - ⇒ banks give up discount on interest rate
- Binding capital constraint:

$$N_{t+1}^{CE} = \zeta_t L_{t+1}^{CE}$$
 & $D_{t+1}^{CE} = (1 - \zeta_t) L_{t+1}^{CE}$

$$E_{t}\left[R_{l,t+1}^{CE}\right] = R_{d,t+1}^{CE} + \underbrace{\zeta_{t}\left(\frac{1}{\beta} - R_{d,t+1}^{CE}\right) - \left(\xi\left(L_{t+1}^{CE}, N_{t+1}^{CE}; a_{t}\right) - \underbrace{\zeta_{t}E_{t}\left[\int_{0}^{\omega_{t+1}^{e}} R_{d,t+1}^{CE} dF\left(\omega\right)\right]}\right)}_{Liquidity\ premium}$$

$$E_{t}\left[R_{l,t+1}^{CE}\right] = R_{d,t+1}^{CE} + \underbrace{\zeta_{t}\left(\frac{1}{\beta} - R_{d,t+1}^{CE}\right)}_{Liquidity\ premium} - \left(\xi\left(L_{t+1}^{CE}, N_{t+1}^{CE}; a_{t}\right) - \underbrace{\zeta_{t}E_{t}\left[\int_{0}^{\omega_{t+1}^{*}} R_{d,t+1}^{CE} dF\left(\omega\right)\right]}_{Government\ transfer}\right)$$

$$E_{t}\left[R_{l,t+1}^{CE}\right] = R_{d,t+1}^{CE} + \underbrace{\zeta_{t}\left(\frac{1}{\beta} - R_{d,t+1}^{CE}\right)}_{Liquidity\ premium} - \underbrace{\left\{\xi\left(L_{t+1}^{CE}, N_{t+1}^{CE}; a_{t}\right) - \zeta_{t}E_{t}\left[\int_{0}^{\omega_{t+1}^{*}} R_{d,t+1}^{CE} dF\left(\omega\right)\right]\right\}}_{Government\ transfer}$$

$$\underbrace{Liquidity\ cost\ of\ lending}$$

$$Risk-shifting\ cost\ of\ lending$$

$$E_{t}\left[R_{l,t+1}^{CE}\right] = R_{d,t+1}^{CE} + \underbrace{\zeta_{t}\left(\frac{1}{\beta} - R_{d,t+1}^{CE}\right) - \left(\xi\left(L_{t+1}^{CE}, N_{t+1}^{CE}; a_{t}\right) - \zeta_{t}E_{t}\left[\int_{0}^{\omega_{t+1}^{*}} R_{d,t+1}^{CE} dF\left(\omega\right)\right]\right)}_{Liquidity\ cost\ of\ lending}$$

$$\underbrace{Liquidity\ cost\ of\ lending}_{Liquidity\ cost\ of\ lending} - \underbrace{\left(\xi\left(L_{t+1}^{CE}, N_{t+1}^{CE}; a_{t}\right) - \zeta_{t}E_{t}\left[\int_{0}^{\omega_{t+1}^{*}} R_{d,t+1}^{CE} dF\left(\omega\right)\right]\right)}_{Risk-shifting\ cost\ of\ lending}$$

- Increasing with tightening of capital requirements
- Regulator's goal:
 - Dampen risk-shifting cost without excessive increase in liquidity cost

Quantitative Assessment

Configuration of Model Parameters

Description	Symbol	Value	Source/Target
Subjective Discount Factor	β	0.975	Standard
Risk Aversion Coefficient	γ	1.000	Standard
Elasticity of Deposits and Consumption	η	1.200	St.dev. of debt-consumption ratio
Deposits Weight	χ	0.010	Average liquidity premium
Firm Capital Share	α_f	0.355	Capital-output ratio
Firm Operating Cost	o_f	0.055	St.dev. of investment-capital ratio
Bank Capital Share	α_b	0.780	Capital-output ratio
Bank Operating Cost	o_b	0.065	Profit-to-loan ratio
Bank Output Weight	\bar{a}_b	-1.35	Capital ratio in two sectors
Capital Adequacy Ratio	$ar{ar{\zeta}}_b$	0.073	Average leverage ratio
Depreciation Rate	δ	0.075	Investment-capital ratio
Persistence of Productivity Schock	$ ho_a$	0.95	Process for Solow residuals
Std of Productivity Schock	σ_a	0.020	Process for Solow residuals
Std of Idiosyncratic Shock	σ_{ω}	0.335	Bailout rate
Dispersion of Idiosyncratic Volatility	ν	0.500	Idiosyncratic volatility dispersion
· · · · · · · · · · · · · · · · · · ·			

Risk-Shifting and Liquidity during Expansions

Impulse Responses to Positive TFP Shock

Optimal Policy Rule

Ramsey Capital Requirement

• Lending capital requirement, ζ_t^L :

$$L_{t+1}^{\zeta^{L}} = L_{t+1}^{FB}$$
 & $D_{t+1}^{\zeta^{L}} < D_{t+1}^{FB}$

• Liquidity capital requirement, ζ_t^D :

$$D_{t+1}^{\zeta^{D}} = D_{t+1}^{FB}$$
 & $L_{t+1}^{\zeta^{D}} > L_{t+1}^{FB}$

 Ramsey capital requirement trades off reduced inefficient lending with reduced liquidity provision

Optimal Policy Rule

Ramsey capital requirement is defined by:

$$\zeta_t^* = \zeta \left(\tilde{S}_t, \tilde{S}_{t-1} \right) \approx 5\% + 0.1\% \times \left(\tilde{I}_t - \tilde{y}_t \right) + 0.7\% \times \tilde{y}_t \quad \left[R^2 = 99.99\% \right]$$

with

$$\tilde{S}_t = (S_t - S_{ss})/\sigma_S$$
 & $S_t = \{\zeta_{t-1}, L_t, K_{f,t}, a_t\}$

- ► Fluctuates mostly between 4% and 6%
- lacktriangle One standard deviation increase in credit gap increases ζ^* by 0.1%
- ullet Credit gap as solely indicator $\left[R^2=13.66\%\right]$

Model Dynamics in Ramsey Economy

Impulse Responses to Positive TFP Shock

Welfare Analysis

Welfare Implications of Dynamic Policies

■ - Ramsey policy, ♦ - policy solely based on credit gap, • - fixed capital ratios 🔊 🤉 🧟

Model with Liquidity Shocks

• Liquidity shocks to household preference for liquidity

$$\log\left(\chi_{t}\right) = \left(1 - \rho_{\chi}\right)\bar{\chi} + \rho_{\chi}\log\left(\chi_{t-1}\right) + \sigma_{\chi}\varepsilon_{t}, \qquad \varepsilon_{t} \sim \textit{iid } \mathcal{N}\left(0, 1\right)$$

• Implications:

$$\begin{split} &\zeta_t^* \approx 5\% + 0.1\% \times \left(\tilde{I}_t - \tilde{y}_t\right) + 0.7\% \times \tilde{y}_t \\ &\zeta_t^* \approx 5\% + 0.1\% \times \left(\tilde{I}_t - \tilde{y}_t\right) + 0.7\% \times \tilde{y}_t - 0.1\% \times \tilde{I}p_t \end{split} \qquad \begin{bmatrix} R^2 = 91.07\% \\ [R^2 = 97.66\%] \end{bmatrix} \end{split}$$

Conclusions

- Welfare gain from dynamic policies is large
- Procyclical capital requirements
 - Prevent inefficient lending during expansions
 - Do not restrict bank lending and liquidity provision during recessions
- Ramsey policy fluctuates between 4% and 6%
- Key cyclical indicators: credit gap, GDP growth and liquidity premium
 - Optimal policy significantly outperforms Basel proposed policy

Quantitative Model

Production sector

- Two sectors:
 - (i) Bank-dependent
 - (ii) Bank-independent
- Multiperiod loans $\delta < 1$
 - ▶ loans = capital accumulated by bank-dependent borrowers
- Countercyclical dispersion of bank-specific shocks: $\sigma_{\omega}\left(a_{t}
 ight)=\sigma_{\omega}e^{u a_{t}}$
- Operating costs

Household sector

CRRA utility defined over consumption and deposits according to CES aggregator

$$v\left(C_{t}, D_{t+1}\right) = \left(C_{t}^{\frac{\eta-1}{\eta}} + \chi D_{t+1}^{\frac{\eta-1}{\eta}}\right)^{\frac{\eta}{\eta-1}}$$

Quantitative Model

Production sector

- Two sectors:
 - (i) Bank-dependent
 - (ii) Bank-independent
- ullet Multiperiod loans $\delta < 1$
 - ▶ loans = capital accumulated by bank-dependent borrowers
- Countercyclical dispersion of bank-specific shocks: $\sigma_{\omega}\left(a_{t}\right)=\sigma_{\omega}e^{u a_{t}}$
- Operating costs

Household sector

 CRRA utility defined over consumption and deposits according to CES aggregator

$$v(C_t, D_{t+1}) = \left(C_t^{\frac{\eta-1}{\eta}} + \chi D_{t+1}^{\frac{\eta-1}{\eta}}\right)^{\frac{\eta}{\eta-1}}$$

Quantitative Model

Production sector

- Two sectors:
 - (i) Bank-dependent
 - (ii) Bank-independent
- Multiperiod loans $\delta < 1$
 - ▶ loans = capital accumulated by bank-dependent borrowers
- Countercyclical dispersion of bank-specific shocks: $\sigma_{\omega}\left(a_{t}\right)=\sigma_{\omega}e^{u a_{t}}$
- Operating costs

Household sector

CRRA utility defined over consumption and deposits according to CES aggregator

$$v\left(C_{t},D_{t+1}\right) = \left(C_{t}^{\frac{\eta-1}{\eta}} + \chi D_{t+1}^{\frac{\eta-1}{\eta}}\right)^{\frac{\eta}{\eta-1}}$$

Quantitative Model - Production Sector

Production sector

- Bank-dependent
 - Production technology

$$e^{\omega_{j,t}+\bar{a}_b+a_t}I_{j,t}^{\alpha_b}$$

- \star Dispersion of *iid* shocks $\sigma_{\omega}\left(a_{t}\right)=\sigma_{\omega}e^{-\nu a_{t}}$
- Capital accumulation

$$\underbrace{K_{b,t+1}}_{L_{t+1}} = (1-\delta)\underbrace{K_{b,t}}_{L_t} + I_{b,}$$

- ▶ Operating cost o_b > 0
- Bank-independent
 - Production technology

$$e^{a_t}K_{f,t}^{\alpha_f}$$

▶ Rental rate $R_{k,t}$

$$R_{k,t} = \alpha_f e^{a_t} K_{f,t}^{\alpha_f - 1}$$

Capital accumulation

$$K_{f,t+1} = (1 - \delta) K_{f,t} + I_{f,t}.$$

▶ Operating cost $o_f > 0$

Quantitative Model - Household Sector

Household sector:

$$\begin{aligned} \max_{C_t,D_{t+1}} E\left[\sum_{t=0}^{\infty} \beta^t \frac{v\left(C_t,D_{t+1}\right)^{1-\gamma}-1}{1-\gamma}\right] \\ s.t. \qquad v\left(C_t,D_{t+1}\right) = \left(C_t^{\frac{\eta-1}{\eta}} + \chi D_{t+1}^{\frac{\eta-1}{\eta}}\right)^{\frac{\eta}{\eta-1}}, \quad \eta > 1 \end{aligned}$$

• Rate of return on deposits:

$$E_{t}[M_{t,t+1}R_{d,t+1}] = 1 - \chi \left(\frac{D_{t+1}}{C_{t}}\right)^{-\frac{1}{\eta}}$$

Mapping Model to Data (1/2)

Output, investment, stock of capital (Financial Accounts of U.S., NIPA):

- Bank-dependent sector:
 - (i) Households and Nonprofit Institutions Serving Households
 - (ii) Nonfinancial Noncorporate Business
- Bank-independent sector:
 - (i) Nonfinancial Corporate Business
 - (ii) Federal, State and Local Governments

Back

Mapping Model to Data (2/2)

Bank specific data:

- Capital adequacy ratio and bank profits (FDIC Aggregate Time Series)
- Bailout rate (FDIC Bank Fail List)
- Bank debt (Financial Accounts of U.S.):
 - deposits plus other forms of short-term debt net of Treasury holdings and liquid assets (Krishnamurthy, Vissing-Jorgensen (2015))
- Liquidity premium (Federal Reserve Selected Interest Rates):
 - spread between 3 Month Commercial Paper and 3 Month TBill

Benchmark Calibration

First Aggregate Moments

	Model				
	Data	Mean	2.5%	97.5%	
6 1 1 6 1 1 1 1 1 1 1 1			te Sector	0.10	
Capital-Output, K/Y	3.03	2.99	2.86	3.13	
Investment-Capital, I/K	0.07	0.08	0.07	0.08	
		Market	Fraction	ction	
Capital Weight, K_b/K	0.46	0.45	0.40	0.51	
Output Weight, Y_b/Y	0.28	0.28	0.23	0.33	
	Banking Sector				
Capital-Output, K_b/Y_b	4.96	4.87	4.79	4.94	
Investment-Capital, I_b/K_b	0.05	0.08	0.07	0.09	
Capital Adequacy Ratio, N/L , %	7.26	7.26	7.26	7.26	
Profit-Lending, π/L	0.04	0.05	0.05	0.05	
Liquidity Premium, $R_f - R_d$, %	0.57	0.56	0.46	0.65	
Bailout Rate, %	0.76	0.79	0.56	1.06	
	Bank-Independent Sector				
Capital-Output, K_f/Y_f	2.29	2.28	2.23	2.33	
Investment-Capital, I_f/K_f	0.09	0.08	0.07	0.08	

Benchmark Calibration

Second Aggregate Moments

			Model	
	Data	Mean	2.5%	97.5%
		Aggrega	te Sector	
Consumption, $\sigma(\Delta c)$	1.28	0.83	0.61	1.14
Output, $\sigma(\Delta y)$	2.00	2.02	1.66	2.41
Investment, $\sigma(\Delta i)$	4.36	7.16	5.96	8.47
		Bankin	g Sector	
Out - (A)	2.54	2.22	1.71	2.84
Output, $\sigma(\Delta y_b)$				
Investment, $\sigma(\Delta i_b)$	9.28	12.49	10.40	14.89
Lending, $\sigma(\Delta I)$	2.60	1.53	0.97	2.32
Debt-Consumpion Ratio, $\sigma (\Delta d - \Delta c)$	3.67	0.79	0.47	1.25
Profits, $\sigma(\Delta \pi)$	13.59	10.58	8.44	13.09
		Bank-Indepe	endent Sect	or
Output, $\sigma(\Delta y_f)$	2.07	2.00	1.67	2.38
Investment, $\sigma(\Delta i_f)$	3.84	3.09	2.54	3.70
Liquidity Premium, $\sigma(R_f - R_d)$	0.35	0.03	0.01	0.07

Benchmark Calibration

Business Cycle Correlations

		Model		
	Data	Mean	2.5%	97.5%
	Aggregate Sector			
Consumption, $\rho(\Delta c, \Delta y)$	0.77	0.89	0.86	0.93
Investment, $\rho(\Delta i, \Delta y)$	0.84	0.97	0.93	0.99
	Banking Sector			
Output, $\rho(\Delta y_b, \Delta y)$	0.82	0.95	0.93	0.97
Investment, $\rho(\Delta i_b, \Delta y)$	0.70	0.95	0.91	0.97
Lending, $\rho(\Delta I, \Delta y)$	0.47	0.69	0.64	0.74
Deposits, $\rho(\Delta d - \Delta c, \Delta y)$	0.54	0.37	0.22	0.55
Profits, $\rho(\Delta \pi, \Delta y)$	0.15	0.79	0.74	0.84
Liquidity Premium, $\rho(R_f - R_d, \Delta y)$	-0.21	0.04	-0.32	0.38
	Е	Bank-Indepe	endent Sec	tor
Output, $\rho(\Delta y_f, \Delta y)$	0.96	0.99	0.98	1.00
Investment, $\rho\left(\Delta i_f, \Delta y\right)$	0.59	0.94	0.92	0.95

Ramsey Problem

Ramsey planner maximizes lifetime utility of households subject to implementability conditions:

$$\left\{ \mathit{C}_{t}^{*},\mathit{L}_{t+1}^{*},\mathit{D}_{t+1}^{*},\mathit{K}_{f,t+1}^{*}\right\} = \mathit{argmax}\,\mathit{E}\left[\sum_{t=0}^{\infty}\beta^{t}\mathit{u}\left(\mathit{C}_{t},\mathit{D}_{t+1}\right)\right]$$

s.t. budget constraint & FOCs of households balance sheet constraint & FOCs of banks FOCs of bank — independent firms resource constraint

Ramsey Problem

Ramsey planner solves:

$$\left\{ C_t^*, L_{t+1}^*, D_{t+1}^*, K_{f,t+1}^* \right\} = \operatorname{argmax} E \left[\sum_{t=0}^{\infty} \beta^t u \left(C_t, D_{t+1} \right) \right]$$
 s.t.
$$C_t = R_{d,t} D_t - D_{t+1} + Z_t - T_t + R_{k,t} K_{f,t} - I_{f,t} - o_f K_{f,t} \right]$$

$$E_t \left[M_{t,t+1} R_{d,t+1} \right] = 1 - \chi \left(\frac{D_{t+1}}{C_t} \right)^{-\frac{1}{\eta}}$$

$$E_t \left[M_{t,t+1} \tilde{R}_{l,t+1} \right] = \theta_t - \tilde{\xi}_t$$

$$L_{t+1} = N_{t+1} + D_{t+1}$$

$$E_t \left[M_{t,t+1} \tilde{R}_{k,t+1} \right] = 1$$

$$C_t + I_t + o_b L_t + o_f K_{f,t} = Y_t$$